
Zendoo

Source Code Audit

Zendoo

Source Code Audit
Prepared for Horizen • June 2021

v210921

1. Executive Summary

2. Introduction

3. Scope

4. Assessment
4.1 System design
4.2 Threat scenarios
4.3 Embedded crypto library interactions

5. Summary of Findings

6. Findings
ZOO-001 - Reachable assertion allows attackers to hijack the network
ZOO-002 - DoS attack by improper handling of compressed data
ZOO-003 - Malicious sidechains can block withdrawals to the mainchain
ZOO-004 - Sidechain certificates enable mainchain resource exhaustion attacks
ZOO-005 - Ceased sidechains enable mainchain resource exhaustion attacks

7. Appendix I

8. Disclaimer

© 2021 Coinspect 1

1. Executive Summary

In May 2021, Horizen engaged Coinspect to audit the security of its Zendoo open

sidechain platform. The objective of this audit was to evaluate the security of the

framework and the Cross-Chain Transfer Protocol (CCTP) to identify vulnerabilities

that might allow adversaries to take advantage of the mainchain and sidechains

interactions.

The platform is composed of mainchain and sidechain modules. The focus of this

audit were the mainchain modules, the security of the sidechains and their specific

implementation were not evaluated during this audit.

The modifications introduced to the original Zcash codebase were found to be

consistent with the existing security assumptions and defense mechanisms. The

code was extensively documented with commentaries and several unit and

integration tests are included in the repository.

Overall, Coinspect did not find any high risk security vulnerability that would

directly result in stolen or lost user funds. However, some vulnerabilities are

reported that can affect the mainchain availability (and all sidechains availability as

a result) and could be abused by attackers to target specific nodes or mount

network wide attacks that could weaken the integrity of the blockchain.

The following issues were identified during the assessment:

High Risk Medium Risk Low Risk Zero Risk

5 0 0 0

Coinspect identified four high risk issues during the assessment. The root causes

for these vulnerabilities can be categorized in two main groups:

1. Insufficient validation of untrusted data that can be exploited to crash the

Zendoo node as a result of a panics in the Rust components.

© 2021 Coinspect 2

https://www.horizen.global/
https://coinspect.com

2. Design issues related to the mainchain mempool transaction acceptance

criteria in the context of malicious sidechains.

During August 2021, Coinspect verified these findings had been correctly

addressed by the Horizen team and this report was updated to reflect those fixes.

During September 2021, Coinspect verified additional changes made by Horizen to

the source code and this report was updated to reflect those changes in Appendix I.

The present report details the tasks performed and the vulnerabilities found during

this audit as well as several suggestions aimed at improving the overall code

quality, and warnings regarding potential issues.

© 2021 Coinspect 3

2. Introduction

Zendoo is a sidechain solution designed to enable blockchain scalability and

extensibility by allowing users to create a parallel platform with a custom business

logic bound to the Horizen public blockchain as the mainchain.

The audited version of the Zendoo client implements the Zendoo verifiable

Cross-Chain Transfer Protocol (CCTP) that allows the creation of ad-hoc sidechains

with customizable business rules. Users can transfer coins from the mainchain to

the sidechains and back through cryptographically verifiable withdrawal certificates.

During this engagement, Coinspect consultants used a hands-on approach to

evaluate the platform security, which included:

● Source code review of Zendoo client code

● Source code review of critical functionality used by the code in scope from

the underlying cryptographic libraries

● Gray-box testing of selected functionality

● Rapid prototyping of potential attacks and proof of concept development

The primary objective of the assessment was to examine the changes made to the

Zend client source code to identify and attempt to exploit security vulnerabilities

that might allow adversaries to attack the mainchain or the sidechains and the

funds secured by them.

© 2021 Coinspect 4

https://github.com/HorizenOfficial/zend_oo

3. Scope

The audit started on May 19, 2021 with focus on the new code modifications

introduced by Zendoo to incorporate the ability for the Horizen mainchain to interact

with multiple sidechains. The security review was guided by the attack scenarios

listed below in the assessment section, aiming at finding as many high risk security

issues as possible in the assigned time, with code coverage not being the main

priority.

The audit was conducted on the https://github.com/HorizenOfficial/zend_oo Github

repository, as of commit 56b651f20780c1bbaa6b0b3ef5cbcdcc9b113bbf on the

sidechains_integration_step2 branch:

commit 56b651f20780c1bbaa6b0b3ef5cbcdcc9b113bbf

(HEAD -> sidechains_integration_step2, origin/sidechains_integration_step2)

Merge: 529b26f54 b767c9a34

Author: albertog78 <34939252+albertog78@users.noreply.github.com>

Date: Fri May 28 19:17:08 2021 +0200

Merge pull request #117 from HorizenOfficial/sidechains_integration_step3

Sidechains integration step temp PR

The sidechains_integration_step2 branch included features merged from the

following branches: mbtr_introdution, ceased_sidechain_withdrawal,

cert_custom_fields, and sc_commitment_tree_cumulative_hash. These

branches were selected by the client as the focus for this audit and introduced the

following features to the Zend client:

1. Mainchain Backward Transfer Requests

2. Ceased Sidechain Withdrawals

3. Customizable Certificate Fields

© 2021 Coinspect 5

https://github.com/HorizenOfficial/zend_oo

4. Cumulative SCBlockTxCommTree

In a similar fashion, the following features implemented as Rust libraries embedded

by the Zend client were targeted:

1. BitVector

2. ProofVerifier

3. SCTxCommTree

Additionally, critical functionality used by the code in scope was reviewed from the

following libraries:

Repository Branch Commit / Date

zendoo-mc-cryptolib sync_with_cctp_lib ac1a8d59330953d9bfabf8c65b11b21bde6669f9

/ May 28, 2021

zendoo-CCTP-lib dev f7aeeba5266a2a6d82e2186958d11ead165191ab

/ May 28, 2021

ginger-lib development_tmp b8b3a9feb8f1c4dde5ce3a3f2e951d597ec9d696

/ May 28, 2021

During the audit, the Zendoo’s whitepaper was utilized as a guide to the platform

design and its expected behaviour:

Zendoo-A_zk-SNARK-Verifiable-Cross-Chain-Transfer-Protocol.pdf

All findings have been identified and reproduced with local builds of Zendoo client

version v2.1.0-beta4-56b651f20-dirty.

The security audit was conducted on the most recent version of the platform, which

is currently under development. New functionality is currently being implemented

and some critical components are being modified, such as the SNARK proof

verification system interface and the integration of asynchronous and batched

© 2021 Coinspect 6

https://github.com/HorizenOfficial/zendoo-mc-cryptolib
https://github.com/HorizenOfficial/zendoo-cctp-lib
https://github.com/HorizenOfficial/ginger-lib
https://www.horizen.io/assets/files/Horizen-Sidechain-Zendoo-A_zk-SNARK-Verifiable-Cross-Chain-Transfer-Protocol.pdf
https://www.horizen.io/assets/files/Horizen-Sidechain-Zendoo-A_zk-SNARK-Verifiable-Cross-Chain-Transfer-Protocol.pdf

verification of proofs which are currently a work in progress. It is recommended all

these late additions to be reevaluated once completed.

Neither the sidechain side libraries nor any specific sidechain implementation (such

as Latus and its consensus protocol) were in scope for this audit.

© 2021 Coinspect 7

4. Assessment

The source code reviewed was found to be clear and thoroughly documented with

an abundant number of commentaries that make it easy to understand.

Zendoo introduced several modifications to the Zcash source code base, and these

were found to be consistent with the overall design. Coinspect did not find any

place where these changes affected the security assumptions nor the defense

mechanisms in place.

The security patches from the upstream Zcash project have been backported to the

Zendoo code repository. Specifically, the latest vulnerability identified with

CVE-2020-8806 (disclosed on Feb 2020) has been backported to Zendoo code at

commit ae5046b672523c3231504e23ab8c2dfed27cbdc4 (May 2020).

4.1 System design

This section briefly describes the overall system design, a more complete

specification can be found in Zendoo’s whitepaper.

The platform architecture is comprised of 2 main components:

1. The mainchain (MC from now on) Zendoo client

2. The sidechains (SC from now on)

These two components interact via the Zendoo’s CCTP (Cross-Chain Transfer

Protocol) which implements two main operations:

1. Forward transfers (FT): coins move from MC to SC

2. Backward transfers (BT): coins move back from SC to MC

The SCs must observe the MC, but the MC is agnostic about the SC

implementation. Each SC is created with a sidechain creation transaction, which

includes its own SNARK verification keys that are used to validate proofs included

© 2021 Coinspect 8

https://electriccoin.co/blog/new-releases-2-1-1-and-hotfix-2-1-1-1/
https://github.com/HorizenOfficial/zend_oo/commit/ae5046b672523c3231504e23ab8c2dfed27cbdc4

in certificates submitted as special transactions to the mainchain. This keeps the

mainchain totally agnostic from any sidechain rules and business logic.

Forward transfers are implemented as unspendable outputs, the SC observes these

in the MC to mint coins on their side.

Backward transfer requests consist of sidechain generated proofs, which are

batched in certificates and published to the mainchain. Certificate issuers are

responsible for including the SC users backward transfers requests. These

certificates are processed in withdrawal epochs whose duration is defined in the

sidechain registration transaction.

Sidechains must send at least one certificate each epoch, or they are considered

ceased. If more than one certificate from a SC is received for a certain epoch, the MC

Zendoo client utilizes the quality parameter included in the certificate proof to

determine which certificate will be applied for that epoch.

When a SC is ceased, users can withdraw their funds by submitting a CSW (Ceased

Sidechain Withdrawal) transaction directly to the mainchain.

Another safeguard mechanism was incorporated to the design in order to protect

users from a malicious majority in the sidechain from censoring their backward

transfer requests in order to block them from recovering their funds. The MBTRs

(Mainchain Backward Transfer Request) can be submitted by any user to the MC,

which if the user ownership of the coins is verified can force the SC to include the

corresponding BT in the next epoch certificate.

4.2 Threat scenarios

The threat scenarios and security mechanisms identified and evaluated by

Coinspect experts included but were not limited to:

● Mainchain nodes attacks (e.g., denial of service)

● Malicious sidechains attacks to mainchain nodes (e.g., ill-behaved SNARK

verification circuits)

© 2021 Coinspect 9

● Broken consensus rules (e.g., chain split, malicious miner advantage)

● Double spend or create coins out of thin air in the mainchain or the

sidechains

● Forward and backward transfers transaction validation rules

● Ceased Sidechain Withdrawals mechanism abuse (e.g., replaying withdrawal

requests)

● Identification of possible malicious strategy to cease a sidechain (e.g.

preventing certificates to be accepted by leveraging some bugs)

● Mainchain Backward Transfer Requests

● Identification of possible malicious strategy to delay block propagation by

forging specific certificate elements (e.g. BitVector, proof data, etc) in order

to increase block verification time

● Block processing performance impact of new features

● Certificate verification logic

● Sidechain registration processing

● Sidechain events handling

● Mainchain reorganization handling

● Coin maturity rules

● Sidechain balance accounting

● Modifications performed to the Zendoo node mempool to accommodate

sidechain related transactions and certificates

● Serialization and deserialization of data structures

During the audit Coinspect focused on several scenarios where a malicious

sidechain was registered with the goal of attacking the MC Zendoo client and the

mainchain blockchain. Even when the MC node is designed to be agnostic of the SC

operations, it is affected by several SC specific operations. In particular, many

modifications had to be made to block processing and mempool acceptance criteria.

Coinspect auditors found design issues that enable adversaries to create malicious

sidechains in order to spam the mainchain network for free by submitting as many

SC related transactions as possible, which will be invalidated by a single

transaction. This is because the SC related transactions mempool acceptance

© 2021 Coinspect 10

criteria cannot guarantee the accepted transactions will be able to be executed in

the near future.

In this respect, Coinspect found attackers can spam the network with sidechain

transitions with no cost. This is detailed in ZOO-004 Sidechain certificates enable

mainchain resource exhaustion attacks.

It is worth noting that the MC can not trust the SC verification circuits to be correct

or not malicious, so even when proofs are correct, special care must be taken when

the processing of sidechain related transactions affects the mainchain Zendoo client

state. An issue related to this was found that enables attackers to exhaust network

resources by invalidating transactions in a ceased sidechain and is described in

ZOO-005 Ceased sidechains enable mainchain resource exhaustion attacks.

Zendoo guarantees there never can be more coins sent back from the SC to the MC

than the amount of coins that were sent from MC to SC: the Zendoo client tracks a

balance for each SC. Coinspect reviewed how this was implemented and did not

find any vulnerabilities that could allow the creation of new coins.

The MBTR and CSW special transactions, designed to protect users from

ill-behaved sidechains were dedicated time in order to establish if could be

bypassed. Coinspect found certain sidechain related fees were validated in the MC

before user transactions are accepted to the mempool. Because these fees can be

set and updated by the SC certificate issuers, this could be abused by malicious

sidechains to prevent users from recovering their funds by inflating these fees. This

is further detailed in ZOO-003 Malicious sidechains can prevent users from

withdrawing funds to the mainchain.

Coinspect could not review a sidechain implementation with a fully working MBTR

flow during this audit, and it is recommended the MBTR verification circuits and

the whole mechanism is evaluated in the context of a working sidechain

implementation as Latus when available.

© 2021 Coinspect 11

Blockchain reorganization handling of SC related transactions, withdrawal

certificates and events were reviewed to determine if the added complexity could

lead to a vulnerability or broken consensus caused by edge cases but it was found

to be correct.

4.3 Embedded crypto library interactions

Zendoo client embeds Rust libraries responsible for implementing the verification of

SNARK proofs provided by sidechains certificate issuers.

The high level zendoo-mc-cryptolib library is embedded by the Zendoo client and

exposes the API which implements all the services needed. This library is

implemented in zendoo-mc-cryptolib/src/lib.rs and is responsible for

converting memory buffers provided by the C++ code to Rust slices and passing

them to the zendoo-CCTP-lib which in turn relies on the lower level ginger-lib

code.

These libraries handle binary blobs, sometimes compressed, which are obtained

from the network by the Zendoo client and are passed with almost no previous

validation. For that reason, and because the failure in processing this untrusted data

from the network results in a full node crash, Coinspect considered this an

interesting target during the audit.

Coinspect auditors found it is possible to crash the Zendoo client node by providing

a compressed BitVector that causes it to consume all system memory. This is

detailed in ZOO-002 DoS attack by improper handling of compressed data.

It is worth mentioning that as the zendoo-mc-cryptolib Rust library externally

exported API is designed to be embedded in the node, it has no alternative to

trusting the memory pointers and buffer lengths (for variable length buffers)

provided by the caller. These memory manipulations are performed in unsafe Rust

blocks and could result in memory corruption and unexpected behaviour if the

parameters passed by the node are not correct. Developers must be aware of this

© 2021 Coinspect 12

fact, and never pass the zendoo-mc-cryptolib non-validated untrusted values

obtained from the network.

Some not clearly identifiable constants were observed in Zendoo’s client source

code which lead to hard to maintain code. In particular, the magic constant 254 is

shared between Zendoo client and the Rust libs:

1. sidechaintypes.cpp uses the constant 254

2. Rust libraries define FIELD_CAPACITY and CAPACITY, however the 254

constant is utilized in source code comments as well

Coinspect is calling attention to this issue and using this particular example as it is

related to one of the high risk findings reported in this document: ZOO-001

Reachable assertion allows attackers to hijack the network.

© 2021 Coinspect 13

5. Summary of Findings

ID Description Risk Fixed

ZOO-001 Reachable assertion allows attackers to hijack the
network

High ✔

ZOO-002 DoS attack by improper handling of compressed data High ✔

ZOO-003 Malicious sidechains can block withdrawals to the
mainchain

High ✔

ZOO-004 Sidechain certificates enable mainchain resource
exhaustion attacks

High ✔

ZOO-005 Ceased sidechains enable mainchain resource exhaustion
attacks

High ✔

During August 2021 Coinspect verified all findings have been correctly fixed by

Horizen. ZOO-003 is considered partially addressed as detailed below in the

finding.

© 2021 Coinspect 14

6. Findings

ZOO-001 Reachable assertion allows attackers to hijack the network

Total Risk
High

Fixed
✔

Impact
High

Likelihood
High

Location
cctp_primitives/src/bit_vector/merkle_tree.rs

Description

Attackers can selectively and reliably crash honest nodes by sending a specially

crafted BitVector that results in a panic in the zendoo-CTTP-lib Rust library.

The ability to crash selected nodes could enable attackers to isolate parts of the

network or cause the honest network hashing power to drop if miners are targeted.

As a consequence, the security of the blockchain as a whole could be subverted.

If the provided BitVector size is not a power of 2, because of the log2 function

rounding in ginger-lib, the assert in the merkle_root_from_bytes function will

fail resulting in the node crashing.

pub fn merkle_root_from_bytes(uncompressed_bit_vector: &[u8])

-> Result<algebra::Fp256<algebra::fields::tweedle::FrParameters>, Error> {

let bv = BitVec::from_bytes(&uncompressed_bit_vector);

let bool_vector: Vec<bool> = bv.into_iter().map(|x| x).collect();

// The bit vector may contain some padding bits at the end that have to be discarded

let real_bit_vector_size: usize = bool_vector.len() - bool_vector.len()

% FIELD_CAPACITY;

let merkle_tree_height = log2(real_bit_vector_size / FIELD_CAPACITY) as usize; ⬅
let num_leaves = 1 << merkle_tree_height;

let mut mt = GingerMHT::init(

© 2021 Coinspect 15

merkle_tree_height,

num_leaves,

);

let leaves = bool_vector[..real_bit_vector_size].to_field_elements()?;

assert_eq!(leaves.len(), num_leaves) ⬅

To reproduce this issue, modify the sc_cert_custom_fields.py test and change

the BIT_VECTOR_BUF value to:

01425a68393141592653591dadce4d0000fe8180900000100008200030cc09aa6990

1b5403c5dc914e1424076b739340

The following output was obtained from the proof-of-concept attack script:

Create raw cert with good custom field elements for SC1...

thread '<unnamed>' panicked at 'assertion failed: `(left == right)`

left: `4092`,

right: `4096`',

/home/admin/.cargo/git/checkouts/zendoo-cctp-lib-852597c6711b5702/296ea2b/cctp_primitives/src/bit_vect

or/merkle_tree.rs:46:5

note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

fatal runtime error: failed to initiate panic, error 5

Unexpected exception caught during testing: [Errno 104] Connection reset by peer ⬅
File "/home/admin/zend_oo/qa/rpc-tests/test_framework/test_framework.py", line 122, in main

self.run_test()

File "./jp_sc_cert_customfields.py", line 357, in run_test

cert = self.nodes[0].sendrawcertificate(signed_cert['hex'])

File "/home/admin/zend_oo/qa/rpc-tests/test_framework/authproxy.py", line 157, in __call__

response = self._request('POST', self.__url.path, postdata)

File "/home/admin/zend_oo/qa/rpc-tests/test_framework/authproxy.py", line 139, in _request

return self._get_response()

File "/home/admin/zend_oo/qa/rpc-tests/test_framework/authproxy.py", line 172, in _get_response

http_response = self.__conn.getresponse()

File "/usr/lib/python2.7/httplib.py", line 1137, in getresponse

response.begin()

File "/usr/lib/python2.7/httplib.py", line 448, in begin

version, status, reason = self._read_status()

File "/usr/lib/python2.7/httplib.py", line 404, in _read_status

line = self.fp.readline(_MAXLINE + 1)

File "/usr/lib/python2.7/socket.py", line 480, in readline

data = self._sock.recv(self._rbufsize)

Stopping nodes

Traceback (most recent call last):

© 2021 Coinspect 16

File "./jp_sc_cert_customfields.py", line 402, in <module>

sc_cert_customfields().main()

File "/home/admin/zend_oo/qa/rpc-tests/test_framework/test_framework.py", line 141, in main

stop_nodes(self.nodes)

File "/home/admin/zend_oo/qa/rpc-tests/test_framework/util.py", line 296, in stop_nodes

node.stop()

File "/home/admin/zend_oo/qa/rpc-tests/test_framework/authproxy.py", line 157, in __call__

response = self._request('POST', self.__url.path, postdata)

File "/home/admin/zend_oo/qa/rpc-tests/test_framework/authproxy.py", line 126, in _request

self.__conn.request(method, path, postdata, headers)

File "/usr/lib/python2.7/httplib.py", line 1058, in request

self._send_request(method, url, body, headers)

File "/usr/lib/python2.7/httplib.py", line 1092, in _send_request

self.putrequest(method, url, **skips)

File "/usr/lib/python2.7/httplib.py", line 934, in putrequest

raise CannotSendRequest()

httplib.CannotSendRequest

This is the output captured from the node debug log:

Create raw cert with good custom field elements for SC1...] #########

2021-06-16 00:10:44.512858 [139766713227008] IsCertApplicableToState():1150 - called:

cert[147fe04681108ef5071e3c6c20b983ed6f7580bfe29868f72722721cc7ff4157],

scId[3e123a24e8e9ce28efc519252dd72

7e16365d41480874c7c1c6bae39ea076b32]

2021-06-16 00:10:44.512917 [139766713227008] GetSidechain():695 - FetchedSidechain:

scId[3e123a24e8e9ce28efc519252dd727e16365d41480874c7c1c6bae39ea076b32]

2021-06-16 00:10:44.512946 [139766713227008] GetSidechain():695 - FetchedSidechain:

scId[3e123a24e8e9ce28efc519252dd727e16365d41480874c7c1c6bae39ea076b32]

2021-06-16 00:10:44.512964 [139766713227008] GetSidechain():695 - FetchedSidechain:

scId[3e123a24e8e9ce28efc519252dd727e16365d41480874c7c1c6bae39ea076b32]

2021-06-16 00:10:44.512981 [139766713227008] GetSidechain():695 - FetchedSidechain:

scId[3e123a24e8e9ce28efc519252dd727e16365d41480874c7c1c6bae39ea076b32]

2021-06-16 00:10:44.513001 [139766713227008] vRawData.size() 48 > 1111

cfg.getMaxCompressedSizeBytes() ?

2021-06-16 00:10:44.513017 [139766713227008] decompressing, expected nBitVectorSizeBytes 129921

- The node crashes without logging anything else - ⬅

Recommendation

Check real_bit_vector_size is divisible by 2 before using log2 or remove the

assert if not really needed.

© 2021 Coinspect 17

Status

This finding was correctly addressed in PR #131, which includes new related test

cases.

© 2021 Coinspect 18

https://github.com/HorizenOfficial/zend_oo/pull/131

ZOO-002 DoS attack by improper handling of compressed data

Total Risk
High

Fixed
✔

Impact
High

Likelihood
High

Location
cctp_primitives/src/bit_vector/compression.rs

Description

Attackers can selectively crash arbitrary nodes at will by forcing them to

decompress a specially crafted compressed BitVector that would consume system

memory resulting in an out of memory (OOM) error.

This can be exploited when the compression algorithm used is Bzip2.

Even though the code does check the decompressed size is below the maximum

expected size, this check is performed after the buffer has been decompressed. The

user-provided buffer is passed to the Rust dependency in charge of decompressing

Bzip2 streams:

pub fn decompress_bit_vector(compressed_bit_vector: &[u8], expected_size: usize) ->

Result<Vec<u8>, Error> {

printlndbg!("Decompressing bit vector...");

printlndbg!("Algorithm: {}, size: {}, expected decompressed size: {}, address: {:p}",

compressed_bit_vector[0], compressed_bit_vector.len(), expected_size, compressed_bit_vector);

printlndbg!("Bit vector content:");

printlndbg!("{:x?}", compressed_bit_vector);

let mut raw_bit_vector_result = match compressed_bit_vector[0].try_into() {

Ok(CompressionAlgorithm::Uncompressed) => Ok(compressed_bit_vector[1..].to_vec()),

Ok(CompressionAlgorithm::Bzip2) => bzip2_decompress(&compressed_bit_vector[1..]),

Ok(CompressionAlgorithm::Gzip) => gzip_decompress(&compressed_bit_vector[1..]),

Err(_) => Err("Compression algorithm not supported")?

}?;

if raw_bit_vector_result.len() != expected_size {

Err(format!("Wrong bit vector size. Expected {} bytes, found {} bytes", expected_size,

© 2021 Coinspect 19

raw_bit_vector_result.len()))?

}

raw_bit_vector_result.shrink_to_fit();

Ok(raw_bit_vector_result)

}

fn bzip2_compress(bit_vector: &[u8]) -> Result<Vec<u8>, Error> {

let mut compressor = BzEncoder::new(bit_vector, bzip2::Compression::best());

let mut bzip_compressed = Vec::new();

compressor.read_to_end(&mut bzip_compressed)?;

Ok(bzip_compressed)

}

fn bzip2_decompress(compressed_bit_vector: &[u8]) -> Result<Vec<u8>, Error> {

let mut uncompressed_bitvector = Vec::new();

let mut decompressor = BzDecoder::new(compressed_bit_vector);

decompressor.read_to_end(&mut uncompressed_bitvector)?; ⬅

Ok(uncompressed_bitvector)

}

To reproduce this issue, modify the sc_cert_custom_fields.py test in the original

repository and change the BIT_VECTOR_BUF value to 01 followed by the output of

the following command :

dd if=/dev/zero bs=1G count=15 |bzip2 -9 | xxd -p | tr -d \\n

where 01 indicates that CompressionAlgorithm::Bzip2 is being used.

Also the custom bit vector config (cmtCfg) in the test must be adjusted to

accommodate the new BIT_VECTOR_BUF.

The following output was obtained from the proof-of-concept attack script:

Verify vFieldElementCertificateFieldConfig / vBitVectorCertificateFieldConfig are correctly set

in scinfo for all SCs

Node 0 generates 4 block

epoch_number = 0, epoch_cum_tree_hash =

609586695e755c92dfb7bc03f331130046fb666f6270462d0a08365a1091ae20

Create raw cert with wrong field element for the referred SC2 (expecting failure)...

© 2021 Coinspect 20

Send certificate failed with reason 16: bad-sc-cert-not-applicable

Create raw cert with good custom field elements for SC2...

cum = 609586695e755c92dfb7bc03f331130046fb666f6270462d0a08365a1091ae20

Check cert is in mempools

Create raw cert with bad custom field elements for SC1... (expecting failure)

Send certificate failed with reason 16: bad-sc-cert-not-applicable

Create raw cert with good custom field elements for SC1...

memory allocation of 4294967296 bytes failed ⬅

Unexpected exception caught during testing: [Errno 111] Connection refused ⬅

This is the output captured from the node debug log:

2021-06-16 17:12:43.985395 [140443970606848] dbg_log() - ########## [

Create raw cert with good custom field elements for SC1...] #########

2021-06-16 17:12:44.625181 [140443978999552] IsCertApplicableToState():1150 - called:

cert[cb59f2df96573005ce52e34be3ae9bcba3af5c0ddf059fdcb05a236257675a81],

scId[22a7e5e648ebeeb113bc4dccdae5b

6919c000e00c239bb692cd90d6056815ab3]

2021-06-16 17:12:44.625240 [140443978999552] GetSidechain():695 - FetchedSidechain:

scId[22a7e5e648ebeeb113bc4dccdae5b6919c000e00c239bb692cd90d6056815ab3]

2021-06-16 17:12:44.625270 [140443978999552] GetSidechain():695 - FetchedSidechain:

scId[22a7e5e648ebeeb113bc4dccdae5b6919c000e00c239bb692cd90d6056815ab3]

2021-06-16 17:12:44.625288 [140443978999552] GetSidechain():695 - FetchedSidechain:

scId[22a7e5e648ebeeb113bc4dccdae5b6919c000e00c239bb692cd90d6056815ab3]

2021-06-16 17:12:44.625305 [140443978999552] GetSidechain():695 - FetchedSidechain:

scId[22a7e5e648ebeeb113bc4dccdae5b6919c000e00c239bb692cd90d6056815ab3]

2021-06-16 17:12:44.625339 [140443978999552] vRawData.size() 11252 > 12111

cfg.getMaxCompressedSizeBytes() ?

2021-06-16 17:12:44.625355 [140443978999552] decompressing, expected nBitVectorSizeBytes 129921

- The node crashes without logging anything else - ⬅

Recommendation

Enforce limits for the output size during the decompression process. Consider

calling read in a loop instead of read_to_end.

Status

This finding was correctly addressed in PR #20, which includes new related test

cases.

© 2021 Coinspect 21

https://docs.rs/bzip2/0.4.3/bzip2/bufread/struct.BzDecoder.html#impl-Read
https://doc.rust-lang.org/nightly/std/io/trait.Read.html#method.read_to_end
https://github.com/HorizenOfficial/zendoo-cctp-lib/pull/20

ZOO-003 Malicious sidechains can block withdrawals to the mainchain

Total Risk
High

Fixed
✔

Impact
High

Likelihood
High

Location

zend_oo/src/coins.cpp

Description

Malicious sidechains can subvert the MBTR (Mainchain Backward Transfer Request)

mechanism intended to safeguard users’ funds.

Even though the MBTR mechanism is a safeguard intended to allow users to initiate

funds withdrawals directly in the mainchain in a scenario where a malicious majority

in the sidechain is censoring user’s regular backward transfers, Coinspect found a

malicious sidechain could subvert this protection mechanism implemented by the

mainchain.

The MBTR mechanism is described in section 4.1.2.1 of the whitepaper:

4.1.2.1 Mainchain Managed Withdrawals

There might be cases when a user would want to request a backward transfer directly from the

mainchain rather than creating a BT in the SC. For instance, it would allow users to withdraw funds

in case of a misbehaving (e.g., maliciously controlled sidechain that censors submission of

backward transfers) or ceased sidechain. Hence, we introduced two additional mechanisms that

allow users to make withdrawals directly in the mainchain: 1. Backward transfer request (BTR), and

2. Ceased sidechain withdrawal (CSW). We consider each of them as a special type of transaction.

Similar to withdrawal certificates, such operations are secured by SNARK proofs. The BTR is used to

withdraw funds from an active sidechain if for some reason a user cannot create a backward transfer

inside the sidechain. The idea is that all BTRs submitted to the mainchain will be synchronized to the

sidechain and processed there to verify their legitimacy and include the corresponding backward

transfers in the next WCert using the standard flow. Such processing can be enforced by the

withdrawal certificate SNARK to force a maliciously controlled sidechain to process user’s

withdrawals. Importantly, the BTR does not lead to a direct coin transfer in the mainchain.

© 2021 Coinspect 22

As explained above, MBTRs are enforced by mainchain Zendoo clients as a part of

the SNARK verification circuit configured by the sidechain at creation time.

Assuming the circuit is correct, a valid MBTR forces the SC to include a BWT in the

next epoch certificate.

However, because the SC certificate issuers can set the fees for the sidechain

related TXs, they can set the MBTR fee arbitrarily high to prevent MBTR requests

from entering into the mempool. If the MBTR requests from the users of a sidechain

are not accepted by mainnet nodes, then the mainchain does not have the

opportunity to actually enforce the protection mechanisms. Even if the fees were

not checked by the MC, the user would be required to have the necessary balance

to pay for them.

The Zendoo mainchain client verifies the transaction’s MBTR sidechain fee is above

or equal to the current value for the target sidechain before accepting it to its

mempool:

This is the code in coins.cpp:

CCoinsViewCache::IsScTxApplicableToState(

/**

* Check that the Mainchain Backward Transfer Request amount is greater than or

* equal to the Sidechain Mainchain Backward Transfer Request fee.

*/

if (!CheckScMbtrFee(mbtr))

{

LogPrintf("%s():%d - ERROR: Invalid tx[%s] :

MBTR fee [%s] cannot be less than SC MBTR fee [%s] for scId[%s]",

__func__, __LINE__, txHash.ToString(), FormatMoney(mbtr.scFee),

FormatMoney(GetActiveCertView(scId).mainchainBackwardTransferRequestScFee),

scId.ToString());

return CValidationState::Code::INVALID;

/**

* @brief Checks whether a Mainchain Backward Transfer Request output is still valid

© 2021 Coinspect 23

* based on sidechain current MBTR fee.

*

* @param mbtrOutput The Mainchain Backward Transfer Request output to be checked.

* @return true if mbtrOutput is still valid, false otherwise.

*/

bool CCoinsViewCache::CheckScMbtrFee(const CBwtRequestOut& mbtrOutput) const

{

CScCertificateView certView = GetActiveCertView(mbtrOutput.scId);

return mbtrOutput.scFee >= certView.mainchainBackwardTransferRequestScFee; ⬅
}

The sidechain related fees are not mentioned in the whitepaper (they are not

included in the wcert_sysdata). Coinspect observed that these fees are part of the

verification circuit as well as they are included in the proofs the same way the

certificate quality is.

This was confirmed by Horizen’s team, which explained that the sidechain logic will

be responsible for defining minimum fees based on the processing cost of the

operations on the sidechain side. The logic for enforcing the fees will be sidechain

dependent, and the plan for the Latus sidechain model is to use an average of proof

creation cost for a number of past epochs.

However, it is not clear (source code responsible for validating fee updates was not

found during this review) if fees will have a maximum or if their value will be

restrained at all, as this will depend on each sidechain implementation.

Because the mainchain Zendoo client does not enforce any limit to how fees are

updated, it can not guarantee that the MBTR mechanism will allow users to claim

funds stuck in a malicious sidechain.

Note the MBTR functionality is not mandatory for sidechains to implement, but if

present, it would give a false sense of security to users.

© 2021 Coinspect 24

Recommendation

Consider enforcing fee updates limitations on the mainchain Zendoo client side, for

example only allow fees to be gradually increased. This would prevent malicious

sidechains from gaming the fee updates restrictions that might be in place in the

verification circuits. Also, this would allow users to note fees are being raised and

give them time to withdraw their funds from a sidechain.

Alternatively, clearly document how the MBTR mechanism is limited by the

sidechain fee updates.

Status

This issue has been partially addressed.

The Zendoo team will emphasize the importance of having the fees

very-gradually increased in their documentation.

However, Zendoo decided not to enforce fee update limitations in the mainchain.

Their main reason to reject this suggestion is that it would hinder flexibility in the

sidechains design, which is one of the system’s design goals, as they explained:

Horizen believes that it is the sidechains who must correctly implement their strategy to set

fees for Mainchain Backward Transfer Requests and Forward Transfers, and therefore it is

responsibility of each sidechain to implement them in a way to, for example, not grow in a

non-gradual way. We would not put this enforcement on the mainchain also because there

may be some sidechains that have a particular logic for which, for example, there is a

stronger volatility on the computation price of the proofs on the sidechains side, and the

mainchain would not be aware. One of the goals, for us, consists in leaving this flexibility.

© 2021 Coinspect 25

ZOO-004 Sidechain certificates enable mainchain resource exhaustion attacks

Total Risk
High

Fixed
✔

Impact
High

Likelihood
High

Location

zend_oo/src/main.cpp

Description

Attackers can abuse the sidechain fee system to flood the mainchain network with

transactions that will be relayed by all nodes but are not guaranteed to be included

in a future block, avoiding paying any cost for the use of node's resources and

network bandwidth.

A sidechain certificate has the ability to remove many TXs in the MC mempool. By

updating the SC fees, all those TXs related to the SC might become no longer valid

and will be evicted from node’s mempools by the removeStaleTransactions

function as soon as the certificate is mined .

This creates the opportunity to spam the network with transactions that are relayed

to the whole network but will never be mined, and thus the network will relay

transactions at potentially no cost for the submitter.

In one possible attack scenario the attackers could create a sidechain, and submit a

high priority transaction with a certificate having an updated FT fee. As soon as this

TX is mined, the attacker can submit as many FTs with the old fee to all the nodes

that have not processed this new block and these will be relayed to all the network

until the new chain tip is updated to the new block. In that moment, all the

transactions with the previous FT fee in the network will be either:

a. Rejected upon receival if they are received after the new block has been

connected

b. Evicted from the mempool as no longer applicable

© 2021 Coinspect 26

Alternatively, depending on how the mempools are constituted, an attacker could

start spamming the network with low priority TXs even before the certificate with

the fee update is mined. If there are enough TXs in the mempools, the attackers will

be sure their TXs will not be mined before the fee update certificate transaction is

included in a block, propagated, and their spam transactions are evicted from all

mempools.

Another possible scenario is a malicious miner taking advantage over the rest of the

miners that will be slowed down while relaying and processing all the spam

transactions that will be accepted and later invalidated without a chance of being

mined.

These are node’s debug.log excerpts from Coinspect’s PoC for reproducing these

scenarios:

a. When the outdated TXs are received after the new block has been connected

in the node
2021-06-22 23:24:53.725776 [140656009799424] ProcessMessage() - received: tx (305 bytes) peer=4

2021-06-22 23:24:53.725820 [140656009799424] checkTxSemanticValidity():194 -

tx=f4573645912db17edf2315b3947f65f05a03dc87696baf5032ab536dfadc230d

2021-06-22 23:24:53.725868 [140656009799424] GetSidechain():695 - FetchedSidechain:

scId[0179b8f3e52efd8f305d91ba5829f1ab527fd1cc285fe1ff5397ffdeafe0ed8a]

2021-06-22 23:24:53.725978 [140656009799424] IsScTxApplicableToState():1320 - ERROR: Invalid

tx[f4573645912db17edf2315b3947f65f05a03dc87696baf5032ab536dfadc230d] to

scId[0179b8f3e52efd8f305d91ba5829f1ab527fd1cc285fe1ff5397ffdeafe0ed8a]: FT amount [11.00] must

be

greater than SC FT fee [11.00]ERROR: AcceptTxToMemoryPool():1520 - ERROR: sc-related tx

[f4573645912db17edf2315b3947f65f05a03dc87696baf5032ab536dfadc230d] is not applicable:

ret_code[0x10]

2021-06-22 23:24:53.726003 [140656009799424]

f4573645912db17edf2315b3947f65f05a03dc87696baf5032ab536dfadc230d from peer=4 /zen:2.1.0beta4/

was not accepted into the memory pool: bad-sc-tx-not-applicable

2021-06-22 23:24:53.726017 [140656009799424] sending: reject (61 bytes) peer=4

b. When outdated TXs are in the mempool and the new block is received
node1/regtest/debug.log:2021-06-22 23:24:53.552443 [140656144017152]

removeStaleTransactions():813 - removed 0 certs and 98 txes

© 2021 Coinspect 27

node2/regtest/debug.log:2021-06-22 23:24:53.717313 [139831912949504]

removeStaleTransactions():813 - removed 0 certs and 98 txes

node3/regtest/debug.log:2021-06-22 23:24:53.831225 [140202202875648]

removeStaleTransactions():813 - removed 0 certs and 98 txes

In order to be able to spam the MC for all blocks, attackers can create many

sidechains with their corresponding epochs expiring in different blocks in the

mainchain.

It is worth noting Coinspect verified that those nodes relaying the outdated

transactions do not get banned by the nodes receiving the transactions. This is

correct because it prevents this issue from being abused to ban and isolate nodes

from the network.

Recommendation

In order to prevent this issue, Coinspect recommends further evaluating the logic

used to determine if SC related transactions should be accepted to a Zendoo

mainchain node’s mempool.

One possible solution for this specific issue could be to restrict the SC fee updates

to a certain range each epoch and enforce this in the MC node code (restricting this

to the verification circuit is not enough in the evil sidechain scenario). For example,

only allow the fee to be increased or decreased by a 1% each epoch. Then, this

would allow the node to only accept and relay SC related TXs with fees that make

them minable during the current and the following epoch, thus preventing the

attack.

Even though Coinspect focused on the fee update mechanism and how it affects

the mempool for this finding description, it is also recommended to analyze if

this issue could be exploited through other vectors involving other sidechain

events and transactions.

© 2021 Coinspect 28

Status

This finding was correctly addressed in PR #165, which includes new related test

cases.

© 2021 Coinspect 29

https://github.com/HorizenOfficial/zend_oo/pull/165

ZOO-005 Ceased sidechains enable mainchain resource exhaustion attacks

Total Risk
High

Fixed
✔

Impact
High

Likelihood
High

Location

zend_oo/src/txmempool.cpp

Description

Attackers can abuse CSW (Ceased Sidechain Withdrawal) transactions to flood the

mainchain network with transactions that will be relayed by all nodes but are not

guaranteed to be included in a future block, avoiding paying any cost for the use of

nodes' resources and network bandwidth.

When a sidechain is ceased (after no certificate is submitted for the duration of the

configured withdrawal epoch) users can submit CSW (Ceased Sidechain

Withdrawal) transactions to the mainchain to claim their funds. In order to accept a

CSW to the mempool, the Zendoo client verifies that the current sidechain balance,

including the effect of other CSW transactions already in the mempool, is enough to

fulfil the request, or the transaction is rejected.

However, because the CSW proof verification circuit is defined by the sidechain

when it is created, it is possible to define a sidechain with an ill-behaved circuit

which allows generating proofs for users to claim more funds than actually

available to the mainchain.

In that scenario, it is possible for conflicting CSW proofs to be created which can be

used, when mined in a block, to invalidate many other legitimate proofs which were

already accepted in the mempool and relayed to the whole network. All those TXs

related to the SC might become no longer valid and will be evicted from nodes’

mempools by the removeOutOfScBalanceCsw function as soon as the conflicting

transaction is mined.

© 2021 Coinspect 30

This creates the opportunity to spam the network with transactions that are relayed

to the whole network but will never be mined, and thus the network will relay

transactions at potentially no cost for the submitter.

The attack scenarios are similar to the ones previously discussed in ZOO-004

Mainchain TX flooding network denial of service.

This is the output from Coinspect’s PoC for reproducing this specific scenario:

Created SC id: 1f126e457487acda6352f7aa58995c88a882c700857a70589b96213939f004f6

Let 2 epochs pass by...

==> certificate for epoch 0

15a57eec202275a66df329621b0c2b95b41f95e07b1a6d5879cd5909bc91e971

==> certificate for epoch 1

e3ae8e7e09262b38086f480504e8e07f51f09846424604e1de1aee8af8bdd0b3l

Node0 generates 1 block confirming last cert

Let SC cease...

Node0 generates 9 blocks

Splitting network 0:1-2-3

Creating 10 CSW withdrawing sc_balance/10 each...

Active Cert Data Hash: ------->

16e6298e066db1a0dd39fb0e45ad9bce56246a864a5d291ce31c3abee1b4193e

Ceasing Cum Sc Tx Commitment Tree: ------->

32da6a97d50fb58309465f3feaa241d3caf37819424bbd8598fd47498f646835

Node 0 generates 1 block with CSW for full SC balance

! sent eb07457b118577e54a3a8140b51228e5053d0e2b51eff642a10e09ac0b0714e8

SPAMMING NETWORK WITH SOON TO BE INVALID CSWs...

! sent ee587d665340560bca99c50d6c97e7ceb608e5308be131695b85f02526cb4e0e

! sent b0dbed3949ce707550709c87ed3d5419a7314469fa2365e41b517948e92e2d6c

© 2021 Coinspect 31

! sent 3d671f11d11a028e5e8ce2e37997ca6ffa2f1149554b3523c90c6538c2232771

! sent 92713fd07838090c50662742c975f984c27727f61f9b8a2872a94d9d2dd2ffc0

! sent 1a320acfd8a18bb7e82b2a992f86d45fc9713ab37bdca92fc09dd68b5b10b40f

! sent e2deee147286c13a133a0f0e066dd79d5037bdd64fdb6c3eb92029340e691f0f

! sent 4290bb35ab602366cb9fb48ea21c1bbc6f800a81adecdabfae956dffd1ca3284

! sent 52e1fe189841b0e3a79ef7f2a91a5ff63fe570ec413416dd5069ed10fc1f00f6

! sent 9259db499e9b577a7c08802fec4b45829066f4002848736361a451042b9481d9

! sent b91f2df8cdd395f06350737dc1f0f2979d651263d28bf903587fad43ec23c7dd

Node 0 publishes block with CSW to node 1 to invalidate all previously relayed TXs

Node3 mempool has 0 tx

It is worth noting Coinspect verified that those nodes relaying the outdated

transactions do not get banned by the nodes receiving the transactions. This is

correct because it prevents this issue from being abused to ban and isolate nodes

from the network.

Recommendation

In order to prevent this issue, Coinspect recommends further evaluating the logic

used to determine if SC related transactions should be accepted to a Zendoo

mainchain node’s mempool.

One possible solution for this specific issue could be to restrict the number of

pending CSW transactions in the mempool for each sidechain. This would prevent

the relaying of massive quantities of transactions that are not guaranteed to be

included in a block.

Even though Coinspect focused on the CSW mechanism and how it affects the

mempool for this finding description, it is also recommended to analyze if this

issue could be exploited through other vectors involving other sidechain events

and transactions.

Status

© 2021 Coinspect 32

This finding was correctly addressed in PR #168, which includes new related test

cases.

© 2021 Coinspect 33

https://github.com/HorizenOfficial/zend_oo/pull/168

7. Appendix I

During September 2021, Coinspect reviewed the following modifications performed
to the Zendoo client repository as per the client’s request:

● ForwardTransfer: mcReturnAddress field added.
https://github.com/HorizenOfficial/zend_oo/pull/180

● Sidechains integration step4 low prio thr pause
https://github.com/HorizenOfficial/zend_oo/pull/147

● Increased block size up to 4M; txes are allowed to occupy only a
subs…https://github.com/HorizenOfficial/zend_oo/pull/149

● Added optional parameter 'constant' field element to the generation a…
https://github.com/HorizenOfficial/zend_oo/pull/179

● backport of zen pr #379
https://github.com/HorizenOfficial/zend_oo/pull/170

● Websocket write optimization
https://github.com/HorizenOfficial/zend_oo/pull/171

● Changed segment size from 2^17 to 2^18
https://github.com/HorizenOfficial/zend_oo/pull/169

● Fix for certificates handling in GetBlockTemplate
https://github.com/HorizenOfficial/zend_oo/pull/173

● Removed the duplicated 'scTxsCommitment' field in 'getblock' response
https://github.com/HorizenOfficial/zend_oo/pull/175

● Added strict deserialization functions and size checks in sidechainstype.cpp
to fix an arbitrary data appending to CscProof and CScVKey objects issue
found by the Zendoo team:
○ https://github.com/HorizenOfficial/zend_oo/blob/sidechains_integration

_code_review/src/sc/sidechaintypes.cpp#L307
○ https://github.com/HorizenOfficial/zend_oo/blob/sidechains_integration

_code_review/src/sc/sidechaintypes.cpp#L394
○ https://github.com/HorizenOfficial/zend_oo/blob/sidechains_integration

_code_review/src/gtest/test_libzendoo.cpp#L1932
○ https://github.com/HorizenOfficial/zendoo-cctp-lib/pull/28
○ https://github.com/HorizenOfficial/zendoo-mc-cryptolib/pull/52

No security issues were identified.

© 2021 Coinspect 34

https://github.com/HorizenOfficial/zend_oo/pull/180
https://github.com/HorizenOfficial/zend_oo/pull/147
https://github.com/HorizenOfficial/zend_oo/pull/149
https://github.com/HorizenOfficial/zend_oo/pull/179
https://github.com/HorizenOfficial/zend_oo/pull/170
https://github.com/HorizenOfficial/zend_oo/pull/171
https://github.com/HorizenOfficial/zend_oo/pull/169
https://github.com/HorizenOfficial/zend_oo/pull/173
https://github.com/HorizenOfficial/zend_oo/pull/175
https://github.com/HorizenOfficial/zend_oo/blob/sidechains_integration_code_review/src/sc/sidechaintypes.cpp#L307
https://github.com/HorizenOfficial/zend_oo/blob/sidechains_integration_code_review/src/sc/sidechaintypes.cpp#L307
https://github.com/HorizenOfficial/zend_oo/blob/sidechains_integration_code_review/src/sc/sidechaintypes.cpp#L394
https://github.com/HorizenOfficial/zend_oo/blob/sidechains_integration_code_review/src/sc/sidechaintypes.cpp#L394
https://github.com/HorizenOfficial/zend_oo/blob/sidechains_integration_code_review/src/gtest/test_libzendoo.cpp#L1932
https://github.com/HorizenOfficial/zend_oo/blob/sidechains_integration_code_review/src/gtest/test_libzendoo.cpp#L1932
https://github.com/HorizenOfficial/zendoo-cctp-lib/pull/28
https://github.com/HorizenOfficial/zendoo-cctp-lib/pull/28

8. Disclaimer

The information presented in this document is provided "as is" and without

warranty. Source code reviews are a “point in time” analysis and as such it is

possible that something in the code could have changed since the tasks reflected in

this report were executed. This report should not be considered a perfect

representation of the risks threatening the analyzed system.

© 2021 Coinspect 35

